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J. Phys. A: Math. Gen. 15 (1982) 773-779. Printed in Great Britain 

On the calculation of the partial moments of a distribution 
function from its Fourier transform 

M M R Williams 
Nuclear Engineering Department, Queen Mary College, University of London, Mile End 
Road, London E l  4NS, England 

Received 26 August 1981 

Abstract. A general formula has been obtained for calculating the partial spatial moments 
of a distribution function directly from its Fourier transform. Examples to illustrate the 
technique are given based upon neutron diffusion and transport theory. The extensions to 
other areas of physics and engineering are indicated. 

1. Introduction 

Many practical situations arise where it is necessary to calculate a particular moment or 
a set of moments of a distribution function. Such moments are, for example, related to 
the mean value and variance as well as to skewness and kurtosis, etc. Often we find that 
the distribution function F ( x )  is given in terms of a Fourier integral whose subsequent 
inversion is not always a simple or direct problem. However, even if this can be done, it 
is necessary to integrate over the result to obtain the desired moments. In this paper we 
investigate methods for calculating such moments without the intermediate step of 
inverting the transform. 

Applications can be found in the fields of neutron transport theory and radiation 
damage as well as in statistics and related areas (Davison 1957, Williams 1979a). 

2. Theory 

2.1. Full-range moments 

If the Fourier transform P ( k )  of a function F ( x )  is defined by 
00 

F ( k )  = dx e-ikxF(x), 
-ca 

then clearly 
m a"F(k)  

-= (-i)"j- dxx"  e-ikxF(x). 
ak" m 

Setting k = 0 leads to the identity 
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where 
cc 

F,,=[-_dxx"F(xj. 

This result is well known and has been used extensively in neutron transport and 
radiation damage moment calculations. Thus we can define the mean-square distance 
of travel as 

( 5 )  

and this may be evaluated directly from the Fourier transform. An example will be 
given below. 

X 2  = F Z / F o  = -F"(O)/F(O), 

2.2. Half-range moments 

It is often useful to calculate moments over the regions 0 s x s CO or -CO C x c 0, where 
for example 

cc 

Pn = 6, dx x"F(x). 

For such cases the formula of equation (3) does not apply. Nevertheless, by an artifice 
we may express Pn in terms of F ( k )  directly. Thus we rewrite equation (6) as 

where O(x) is the Heaviside unit function. A similar expression may be written for the 
negative range of x.  Now we note from equation (1) that 

1 a =  

F ( x )  = J dk eikrF(k),  
2%- --2 

(81 

and so inserting this into equation (7) and reversing the order of integration leads to 

But it is easily seen that (Roos 1969) 

S(k) i 
dx O ( x )  eikx =-+P.-, 

2 2 x k  

where 6(k j  is the Dirac delta function and P. implies that principal-value integrals are to 
be taken. Clearly by differentiation, we see that 

1 "  Sln'(k) (-)"n! 1 1 
- j dx x n  O(x) elkx = (--i)"( -- - p. -pi) ' 2 7  -" 2 2 T i  

For moments over the range -a s x c 0, we find 

11) 

-I 1 "  dx (--X)"O(-x)eik' =i"(-+---P.~) .  S y k )  (-)"n! 1 
2T - "  I! 2 x i  
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Thus the expression for F,, can be written 

inn! I"(k) 
Fn = 'P("'(0) --P. dk- 

an 

2 2 1 ~ 1  I m  k n + l *  

The integral appearing in equation (12) is reminiscent of that occurring in dispersion 
relations; it is an improper integral and must be interpreted accordingly. Roos (1969) 
shows that the divergent part must be subtracted so that the function is regularised. 
This leads to 

dk - kn-lf(n-l)(o)) 
P. -F(k)=lim $( f ( k )  -P(O) -. . . 

J-m k"+' e-0 l k l a e  (n - l)! 

This integral is always bounded, and therefore we have a prescription for calculating 
the F,,. 

2.3. Partial moments 

A partial moment may be defined as 
P 

F n  (a, 6) = I, dx x n ~ ( x )  

which we may rewrite over the full range of x as 
m 

Fn(a, P ) = J - m d ~ ~ n F ( ~ ) [ O ( ~ - o r ) - O ( ~ - P ) ] .  

Using the Fourier integral for F ( x )  and reversing orders of integration we find 

A change of variables leads to 

F f l ( a , P ) = l _ m d k f ( k ) ~ ( e i r n  -m dz (a+z)"O(z)e ikz  
m 1 CO 

m 

- eikp I-, dz (p  + z ) "O(Z)  eikz). 

Using 

(a + z ) "  = f (")a?' 
u=o y 

we find that equation (17) becomes 

But from equation (11) we have an expression for the integral over z and hence an 
expression for F,, (a, p )  in terms of E(k). 
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2.4. Two-dimensional moments 

If we are given a two-dimensional function @(x, y )  defined by 

then it is clearly a trivial matter to calculate the full-range moments 
m m 

F n , m  = I-, dxxn  I_, dY Y " @ k  Y )  

from 
, n + m  

The extension to any number of independent variables is clear. A more challenging 
problem is the calculation of the partial moments 

s , ,~ = J,, d x x n  J dyy"@(x, y1 
0 

or possibly even 

( 2 3 )  

Considering gn,, we find using the Heaviside function technique that 

U- 

5 

dy y"'O(y) elkz'. ( 2 5 )  

Thus using equation (1 1) for the integrals over x and y we find after some manipulation 
that 

9 =---- &(k1, k2)l 4 ak;ak," 

1 "  m 

dkz &(kl, k2)- [ dxx"O(x) e'k1'- 
2T -m 2 T  -m 

3 n , m  = 

in" a"'"' 
k l = k Z = O  

n, m 

Each of the principal-value integrals must be interpreted according to equation (13). It 
is also possible to have mixtures of full-range and half-range moments. 

3. Examples of applications 

We shall consider two examples: one to illustrate diffusion-like behaviour and the other 
transport-like behaviour. 
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An equation which arises in diffusion theory and which simulates a first-collision 

(27) 

In this equation, 6-' is the diffusion length and a is the total cross section or possibly a 
removal cross section. 

source effect can be written 

F"(x) - b2F(x) + a e-""O(x) = 0. 

Taking Fourier transforms leads to 

F ( k )  = a / (k2+  b2)(a +ik).  (28) 
It is of course not difficult to invert this transform by the normal method of residues 

to find 
a 

x > o  -- a e-bx 
F ( x )  = eCax, 

2b(a-b)  a'-b 

a ebx 
2b(a + 6)' 

x <o.  - - 

From these expressions all of the desired moments may be obtained. However, it may 
sometimes be more convenient to use equations (12) and (13). Thus 

P(0) 1 F ( k )  
go=--- P. dk- 

2 21ri I m  k 

1 1 " d k  a P. - - 
2b2 27ri 1-m k (k2+b2) (a+ ik )  

dk -- 
(k2+b2)(k2+a2)  

a +2b 
2b2(a + b)' 

- - 

Similarly 

gl=-- i d  a O0 dk U 1 
2 dk (k2+b2)(a  + ik)  (k2+b2)(a  + i k ) - p )  

- a'+ 2ab + 2b2 - 
2ab3(a + b) 

This simple form of P ( k )  clearly does not show the power of the method since 
Fourier inversion is quite easy. However, many cases exist in transport theory where 
direct inversion involves complicated integrations around branch points, and it is with 
such problems that the present technique becomes very powerful. For example, if we 
consider the case of an infinite medium with a plane anisotropic source we can write for 
the neutron flux equation (Davison 1957) 

After Fourier transformation we have 
- 

(33) 
1 

"@)= (1 +ikpo)[l  - (c/k) tan-' k]' 
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Now this expression may be inverted and the result is 

where v and g(c, p )  are defined in Williams (1971) and in Case et a1 (1953). These 
expressions are not only tedious to obtain, but also, when avsraged over z to evaluate 
the moments, lead to principal-value integrals involving complicated transcendental 
functions. For this reason the methods discussed earlier are much more efficient. As an 
example, consider the zeroth partial moment of 4 0 ( z ) ,  which is related to the number of 
neutrons captured in the medium z > 0: 

1 1 Fof =--- 
(1 +ikp0)[l - ( c / k )  tan-' k ]  

dk 30 
1 WO +- 2 T  2(1-c) 7r lo [1-(c /k) tan- 'k ] ( l+k  P O )  

-- - 

where Fo" = 50" d t  C # ~ ( Z ) .  
For captures in the region I < 0 we note equation (1 1) and find 

1 1 
tan-'k] 

dk - 
2(1-c) 7r [1-(c/k)tan-' k](l+k2p:) '  

i37) 

Fof + Fo = 1/(1- c),  which is the result obtained from a full-range moment. Clearly, 
equations (36) and (37) are much easier to evaluate than the corresponding integrals 
over equations (34) and (35). 

As a further example we evaluate the first spatial moments F t  and F ;  : 

(38) 
F: = - - - & ( k ) i  i d  --I 1 " d k  -( 1 

2 dk k = O  27r - m k 2  ( l+ikpo)[ l - (c /k) tan- 'k]  1 - c  

which simplifies to 

F ;  ='"-'Im@( 1 
2(1-c) T k2 [1-(c/k)tan-'k](l+k2p?,) 1-c  (39) 

and similarly 

140) 
F -  = -L--J"@( 1 1 

2(1-c) 7r k 2 [1-(c/k)tan-' k]( l+k2pg)  1 - c  1 

The full-range moment 

F I E F ;  - F ;  = p g / ( l - ~ ) .  (41) 

Again, we note the ease with which equations (39) and (40) may be evaluated. 
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4. Summary and conclusions 

A formula has been obtained for calculating the partial moments of a distribution 
function directly from its Fourier transform. Examples based on the one-speed trans- 
port equation show its value in reducing numerical difficulties and generally improving 
the efficiency of the calculation. The method is of value in other fields of physics and 
engineering where moments are required rather than the complete solution. Some 
numerical examples of the use of this technique may be found in Williams (1979b). 
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